为什么有的形可以单独密铺?

网上有关“为什么有的形可以单独密铺?”话题很是火热,小编也是针对为什么有的形可以单独密铺?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

密铺条件:四边形的每个内角在每个拼接点处只应出现一次,且相等的边互相重合。如果在密铺时不太方便,可以采取标号法。

所谓“密铺”,就是指任何一种图形,如果能既无空隙又不重叠的铺在平面上,这种铺法就叫做“密铺”。密铺图形指可以进行密铺的图形。用形状、大小完全相同的平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的密铺,又称做平面图形的镶嵌。

扩展资料

可单独密铺的图形

1、任意三角形、任意凸四边形都可以密铺。

2、正三角形、正四边形、正六边形可以单独用于平移密铺。

3、三对对应边平行的六边形可以单独密铺。

4、目前仅发现十五类五边形能密铺。

正多边形的密铺

正六边形可以密铺,因为它的每个内角都是120°,在每个拼接点处恰好能容纳3个内角;正五边形不可以密铺,因为它的每个内角都是108度,而360°不是108的整数倍,在每个拼接点处的内角不能保证没空隙或重叠现象;除正三角形、正四边形和正六边形外,其它正多边形都不可以密铺平面。

我们都知道,铺地时要把地面铺满,地砖与瓷砖之间就能留有空隙。如果用的地砖是正方形,它的每个角都是直角,那么4个正方形拼在一起,在公共顶点处的4个角,正好拼成一个360度的周角。六边形的每个角都是120度, 3个正六边形拼在一起时,在公共顶点上的3个角度数的和正好也是360度。

除了正方形、长方形以外,正三角形也能把地面密铺。因为正三角形的每个内角都是60度,6个正三角形拼在一起时,在公共顶点处的6个角的度数和正好是360度。

正因为正方形、正六边形拼合以后,在公共顶点上几个角度数的和正好是360度,这就保证了能把地面密铺,而且还比较美观。

因为只有正三角形、正方形、正六边形的内角的整数倍为360°,因此正多边形中仅此三者可以密铺。

圆形不能密铺,但正三角形和等腰梯形、直角梯形能密铺

百度百科-密铺图形

百度百科-密铺

密铺即平面图形的镶嵌,指用形状、大小完全相同的几种或几十种平面图形进行拼接,使彼此之间不留空隙、不重叠地铺成一片。在国际折纸奥林匹克竞赛中,密铺折纸也称为镶嵌折纸。

四边形密铺条件:四边形的每个内角在每个拼接点处只应出现一次,且相等的边互相重合,如果在密铺时不太方便,可以采取标号法。

举例说明

正六边形可以密铺,因为它的每个内角都是120°,在每个拼接点处恰好能容纳3个内角;正五边形不可以密铺,因为它的每个内角都是108度,而360°不是108的整数倍,在每个拼接点处的内角不能保证没空隙或重叠现象;除正三角形、正四边形和正六边形外,其它正多边形都不可以密铺平面。

我们都知道,铺地时要把地面铺满,地砖与瓷砖之间就能留有空隙。如果用的地砖是正方形,它的每个角都是直角,那么4个正方形拼在一起,在公共顶点处的4个角,正好拼成一个360度的周角。

六边形的每个角都是120度,3个正六边形拼在一起时,在公共顶点上的3个角度数的和正好也是360度。除了正方形、长方形以外,正三角形也能把地面密铺。因为正三角形的每个内角都是60度,6个正三角形拼在一起时,在公共顶点处的6个角的度数和正好是360度。

关于“为什么有的形可以单独密铺?”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

本文来自作者[晨露珠]投稿,不代表海宁号立场,如若转载,请注明出处:https://m.hnjsjm.com/hainin/5693.html

(10)
晨露珠的头像晨露珠签约作者

文章推荐

发表回复

作者才能评论

评论列表(3条)

  • 晨露珠的头像
    晨露珠 2025年09月03日

    我是海宁号的签约作者“晨露珠”

  • 晨露珠
    晨露珠 2025年09月03日

    本文概览:网上有关“为什么有的形可以单独密铺?”话题很是火热,小编也是针对为什么有的形可以单独密铺?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您...

  • 晨露珠
    用户090301 2025年09月03日

    文章不错《为什么有的形可以单独密铺?》内容很有帮助